Modulation of the cortical processing of novel and target stimuli by drugs affecting glutamate and GABA neurotransmission.

نویسندگان

  • Todd D Watson
  • Ismene L Petrakis
  • Javon Edgecombe
  • Albert Perrino
  • John H Krystal
  • Daniel H Mathalon
چکیده

In this double-blind, placebo-controlled study, we examined the effects of subanaesthetic doses of ketamine (an NMDA glutamate receptor antagonist) and thiopental (a GABA-A receptor agonist) on the event-related potential (ERP) correlates of deviant stimulus processing in 24 healthy adults. Participants completed three separate pharmacological challenge sessions (ketamine, thiopental, saline) in a counterbalanced order. EEG data were recorded both before and during each challenge while participants performed a visual 'oddball' task consisting of infrequent 'target' and 'novel' stimuli intermixed with frequent 'standard' stimuli. We examined drug effects on the amplitude and latency of the P300 (P3) component of the ERP elicited by target (P3b) and novel stimuli (P3a), as well as the N200 (N2) component elicited by both target and novel stimuli, and the N100 (N1) elicited by standard stimuli. Relative to placebo, both drugs reduced the amplitude of parietal P3b. While both drugs reduced parietal P3a and Novelty N2, ketamine also shortened P3a latency, reduced Novelty N2 amplitude more than thiopental, and increased frontal P3a amplitude relative to placebo. Overall, the data suggest that both the GABA-A and NMDA receptor systems modulate P3b and P3a. NMDA antagonism appears to lead to more varied effects on the neural correlates of novelty processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress

Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...

متن کامل

Identification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei

Gamma-amino butyric acid (GABA) possesses several physiological functions such as neurotransmission, induction of hypotension, diuretic and tranquilizer effects. Production of GABA-enriched products by lactic acid bacteria has been a focus of different researches in recent years because of their safety and health-promoting specifities. In this study, glutamate decarboxylase (gad) gene of a loca...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals.

The role of presynaptic mechanisms in general anesthetic depression of excitatory glutamatergic neurotransmission and facilitation of GABA-mediated inhibitory neurotransmission is unclear. A dual isotope method allowed simultaneous comparisons of the effects of a representative volatile (isoflurane) and intravenous (propofol) anesthetic on the release of glutamate and GABA from isolated rat cer...

متن کامل

Cerebellar Giant Synaptosomes: a Model to Study Basal and Stimulated Release of [3H]gamma-Aminobutyric Acid

Background: Neurotransmitter release is an essential link in cell communication of the nervous system. Many investigations have focused on gamma amino butyric acid (GABA)-ergic neurotransmission, because it has been implicated in the pathophysiology of several central nervous system disorders. To bypass complications related to homo- and heterosynaptic modulation and to avoid indirect interpret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The international journal of neuropsychopharmacology

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 2009